
Journal of Structural Geolo#y. Vol. 3. No. 1. pp. 1 to 17, 1981 0191-8141/81/010001-17 $02.00~ 
Printed in Great Britain © 1981, Pergamon Press Ltd. 

Folds and the strain ellipsoid: a general model 
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Abstraet--A new general model is proposed to account for non-orthogonal relationships of fold axes and axial 
surfaces to the axes of the finite strain ellipsoid. Descriptions in the literature of such relationships, e.g. plunge 
variations and transecting cleavage, are reviewed and the development of the model is outlined. The model is 
described, in which plane strain (k' = 1) or slight flattening strain (k' -- 0.71) or slight constrictional strain (k' 
= 1.85) are imposed on a suite of layers with oblique orientations to the bulk strain axes (X > Y> Z). Folds will 
initiate ~ d i c u l a r  to the direction of shortening in the layer and develop as non-material lines moving through 
the layer by angular migration. At geologically realistic finite strains the folds will be transected by X Y(cleavage). In 
slight flattening strain, folds are likely to be eylindroidal with axes not measurably oblique to XY. In slight 
constrictional strain, en-echelon p¢riclines are predicted, with marked transection by cleavage: in some examples 
the interference of two directions of folding will give rise to severe plunge variations and e v a  downward-facing. 
Although strain markers frequently indicate finite strains in the flattening field, this may result from the 
superimposition of slightly constrictional tectonic strain on compactional flattening. 

INTRODUCTION AND REVIEW 

MODELS of folding generally have one feature in common: 
the assumption of horizontal layering and layer-parallel 
principal compression. The ensuing folds are symmetrical, 
with axial surfaces perpendicular to the median and 
enveloping surfaces and bisecting the interlimb angles, as 
defined by Fleuty (1964). Such fold models may be 
geometric (Ramsay, 1967, Hudleston 1973), finite-element 
simulation (Dieterich & Carter 1969, Shimamoto & Hara 
1976) or dynamic (Blot 1961, Ramberg 1963). These 
studies imply, by analogy, that rocks were deposited and 
remained in regular horizontal layers and were deformed 
by a system of horizontal and vertical tectonic 
displacements. 

The field geologist is faced with the problem of relating 
these models to real structures in folded rocks. Symmetric 
upright folds are rare; axial surfaces are commonly 
inclined to the median surfaces, as well as to the mean 
cleavage; non-plunging cylindrical folds are the excep- 
tion. These relationships are clearly less simple than those 
predicted by theoretical models and require the develop- 
ment of other models. 

A system considered to be of more general application 
to real structures was investigated theoretically and by 
modelling techniques (Treagus 1972, 1973): layers were 
considered to deform in compression, where the principal 
compression was not parallel to the layering. The in- 
termediate strain, taken as zero, was parallel to the 
layering so that the layer was two-dimensional oblique. 
Two main results came from this work. The initial stresses 
should refract through layers of contrasting viscosity and 
thus infinitesimal strain should similarly refract and vary 
in size. Secondly, buckles should initiate symmetrically 
but become asymmetric by hinge migration and non- 
equal thickness changes on fold limbs, during finite strain. 
Anthony & Wickham (1978) have recently made a finite- 
element study of asymmetric folding, which supports the 

theory. 
The two-dimensional oblique model may be applied 

to layers of sedimentary rock of inclined orientation, such 
as would exist in sedimentary basins deformed by major 
horizontal compression perpendicular to the strike of 
layers. The strain indicated by cleavage in this model 
would be expected to show variation around folds as a 
result of buckling strains, and refraction from limb to limb 
as a result of inhomogeneous layer strain. However, fold 
axes should remain parallel to the intermediate finite 
strain throughout the folding stack, and cleavages should 
refract about this axis so that they always intersect 
bedding parallel to the fold axis. 

The two-dimensional oblique model is of general 
application to many folded areas where cleavage-bedding 
intersections are demonstrably parallel to fold axes and 
the mean cleavage is sub-parallel to axial surfaces. In many 
regions, however, detailed measurements show that this 
model cannot be applied in particular where fold axes are 
transected by the (assumed) contemporary cleavage. In 
these examples a more general three-dimensional ob- 
lique model is needed and is developed later in this paper. 
A brief review of recent literature concerned with such 
regions is #oven below, followed by a summary of the 
development of the general model. 

Field descriptions 

One of the earliest detailed structural analyses that 
revealed non-axial planar cleavage was that of Sutton & 
Watson (1956) in the Dalradian of NE Scotland. These 
authors showed that the strike of the earliest observed 
cleavage transected the strike of the axial planes of the first 
folds in two parts of a coastal transect; in one area the 
transection was clockwise, in the other anticlockwise, on 
either side of a third area where the cleavage was axial 
planar. They concluded that the cleavage was a super- 
imposed structure, genetically unrelated to the folding. A 
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recent examination of these exposures by one of us (J. E.T.) 
with Dr. J. Roberts has shown that a second cleavage is 
clearly superimposed upon the first folds, but that locally 
cleavage is oblique to folds in the manner described by 
Sutton & Watson; the cleavage fans and refracts, in 
sympathy with the folds, suggesting that they are geneti- 
cally related. Hinges of first folds in this area commonly 
plunge up to 30 ° towards opposite quadrants, but some of 
the extreme plunge variations measured by Sutton & 
Watson (1956, plate III) are a mixture of first and later 
fold hinges. 

Ramsay (1965) described a region of polyphase defor- 
mation in the Barberton Mountains of South Africa 
where the slaty cleavage crosscuts the first folds and is 
axial planar to the second folds. His observations support 
the view that one phase of deformation was followed 
continuously by a second, and cleavage developed from 
the summation of the two, thus crosscutting the first folds. 

In Maine, U.S.A., Ekren & Frischknecht (1967) found 
that "where good exposures are available it is apparent 
that the cleavage is not parallel to the axial planes of the 
major folds. The cleavage therefore is younger than the 
major folds". 

Brenchley & Treagus (1970) recorded first folds and 
cleavage-bedding intersections which exhibited strong 
plunge variation in a region of Ordovician rocks in Co. 
Wexford, Ireland. It was noted that the area presented 
special problems in the use of minor structures to deduce 
the major structure. Some of the variations of the 
cleavage-bedding intersection are now considered (J.E.T.) 
to arise from intersection of folds by non-axial plane 
cleavage. 

Roberts (1971) described abnormal cleavage patterns 
in a region of folds in Northern Norway. He introduced a 
term 'arcuate hinge cleavage' to define the relationship 
recorded. The cleavage was synchronous with folding but its 
intersection with bedding curved across the fold hinge zones. 
A region of non-cylindrical and incongruous folds in 
Stirfy, Northern Norway has been described by Ramsay 
& Sturt (1973). The folds have wavelengths of axial 
curvature at least 2-4 times the profile wavelengths, but 
frequently larger. One explanation proposed for this non- 
cylindrical folding was constrictional deformation. No 
associated cleavage or schistosity was described in the 
area. The terms incongruous and aberrant were used for 
minor folds with axes and axial planes which had an 
anomalous relationship to the major folds. Ramsay & 
Sturt suggested that these arose from asymmetrical 
relationships between fold and strain axes. 

In an area of Precambrian rocks in Tasmania, Powell 
(1974) recorded variations of cleavage relationships to 
folds, both locally and regionally, from axial planar to 
cross-cutting. He introduced the term 'transected fold 
core' for the latter type. Powell sub-divided his folds into 
'early' and 'late' of the same deformation episode and 
considered cleavage to develop over a relatively short 
time interval rather than continuously. The early folds 
predated cleavage formation and were cross-cut by 
cleavage, but the later folds were contemporary with the 
cleavage which was axial planar. The arguments for 

cleavage initiation over a short time interval are beyond 
the scope of the present review. PoweU concluded that 
cleavage did not represent the finite strain plane X Y ,  but 
that the axial planes were close to this plane. 

Stringer (1975) described Acadian deformation in the 
N. Appalachians where cleavage was not parallel to the 
axial surfaces of folds. He observed variations across one 
fold where cleavage changed from axial planar to non- 
axial planar. His conclusions were that slaty cleavage was 
superimposed on the folds. 

Borradaile (1978) described a new model for transected 
folds, with examples from Canada and Scotland. His 
theoretical model is discussed later. His Canadian ex- 
amples are a reappraisal of Stringer's area (1975) following 
collaboration in the field, and depend largely on Stringer's 
data. Borradaile proposed a method of fold and cleavage 
development during the same deformation episode si- 
milar to Powelrs (1974): cleavage developed relatively 
late in the strain history as a result of non-coaxial strain 
increments. 

In the English Lake District, Soper & Moseley (1978) 
observed that cleavage was rarely exactly axial planar to 
the folds in the main Caledonian folding. The strike of 
cleavage was commonly 5-10 ° clockwise of the fold axial 
surfaces. They suggested that buckling began before 
cleavage formation and the discordance was a result of a 
rotational component of strain. Sanderson et al. (1980) 
have recently described a broad zone of non-axial planar 
cleavage in Lower Palaeozoic rocks, Central Ireland, 
adjacent to the Iapetus suture. Cleavage is clockwise in 
strike from the axial surfaces by up to 90 ° . No explanation 
was offered for the initiation of cleavage oblique to the 
axial surfaces, although the varying angle of transection is 
attributed to later simple shear. 

The present authors observed folds cross-cut by a 
related fanning cleavage in the Silurian rocks of SW Scot- 
land in 1969. It was tentatively suggested (Treagus 1972, 
p. 177) that this relationship might indicate folding of 
layers oblique to the three principal tectonic displace- 
ments. These preliminary observations were followed by a 
field study by J. Treagus and P. Stringer (Stringer & Treag- 
u.5., 1980 and 1981). A coastal section of Ordovician and 
Silurian rocks about 50 km in extent was mapped, and 150 
folds of intermediate size were recorded. Minor folds were 
rare. The structures were varied but the predominant 
factor observed was that most folds were markedly cross- 
cut by cleavage. In longitudinal section the cleavage- 
bedding intersection commonly crossed the fold axis by 
10-20 ° . However, in profile section cleavage fanned and 
refracted through particular layers and showed triangular 
fanning and occasionally finite neutral points around fold 
hinges (Ramsay 1967). These were considered irrefutable 
evidence of cleavage development synchronous to folding. 
Such relationships would not arise from late develop- 
ments of cleavage in the same episode, or by super- 
imposition of cleavage (cf. Rust 1965, Weir 1968). The 
folds in this area were found to be markedly irregular in 
size, shape and orientation: plunge variation was obser- 
ved within particular folds and in adjacent folds across the 
whole region. The mechanism of formation proposed by 
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Stringer & Treagus supports the earlier model (Treagus 
1972). Sedimentary layering was considered to buckle 
obliquely to the principal tectonic displacements so that the 
fold axes in the layers did not fall on the X Y principal 
plane, later to become cleavage. This folding model has 
been placed in the framework of plate tectonic models for 
the region (Stringer & Treagus 1980, 1981). 

The examples above demonstrate that regions of first 
folding with first (slaty) cleavage oblique to the fold axes 
or transecting the folds may be more common than 
generally accepted. Some of the interpretations above 
imply that these relationships are unusual or incong- 
ruous : this is because folds are expected to develop with 
axial plane cleavage. Indeed many explanations appear to 
be based on the argument that because the cleavage was 
not axial planar it must post-date the folding. Where the 
cleavage and folding were clearly both the earliest defor- 
mation in the rocks, and the cleavage was observed to 
show some relationships to folding, a mechanism was 
proposed where the cleavage reflected the later part of a 
rotational strain history. One theory (Powell 1974) pro- 
posed that cleavage development took place over a short 
time interval and therefore did not reflect the total strain 
in the rock. Yet another theory (Ramsay 1965) proposed a 
cleavage cumulative over two non-coaxial deformations. 
It is suggested here that the problem is simplified by 
viewing folding in rocks in a broader theoretical 
framework. 

The development ofthe general model 

Ramberg (1959) investigated the initiation of structures 
in a finite strain ellipsoid with principal axes X > Y > Z. 
He suggested that a thin competent layer would either 
shorten by buckling or stretch by boudinage according to 
its orientation. His examination included layers oblique 
to X, Y and Z and stated: "this axis of ptygmatic folds and 
the zones of. . .  boudin fracture of such oblique veins.., in 
general make oblique angles with the host rock schistosity 
and lineation". Flinn followed this with his classic paper 
(1962) on three dimensional finite strain. Flinn's method 
was to consider the movement of planes and lines in 
progressive homogeneous strain. He showed that the 
concept of finite homogeneous strain allowed for no 
folding or boudinage, but uniform behaviour of all layers. 
He thus assumed that folds generate by buckling, but 
are modified by homogeneous passive deformation. 

Flinn presented a method of deriving the two principal 
strains in any plane in the strain ellipsoid by the Fresnel 
construction on a stereographic projection. From this, the 
directions of fold or boudinage generation could be 
determined (1962, p. 424): "the axis on which buckling 
takes place can be predicted from the deformation 
ellipsoid since it will be one of the two principal directions 
for that plane. What cannot be predicted is the attitude of 
the axial plane in a newly-generated fold. It is possible that 
the newly generated axial plane will be normal to the layer 
being folded. As soon as the axial plane is formed it rotates 
towards the largest axis of the deformation ellipsoid". 
Flinn also stated: "neither fold axes nor axial planes bear 

any special relation to the axes of the deformation 
ellipsoid". His conclusions in 1962 were that he would 
expect, in general, more complex relationships of folding 
and cleavage than were reported in the literature. He 
wondered if field data had been simplified in order to be 
more easily understood. 

In earlier work with two dimensionally oblique layers 
(Treagus 1972, 1973) some preliminary suggestions were 
made about folding of generally oblique layers. It was 
stated that fold axes should not in general be parallel to a 
principal strain direction; that principal strains should 
refract from layer to layer in a contrasting multilayered 
sequence, such that intersections of principal planes would 
vary from layer to layer; and that buckles should initiate 
symmetrically but become asymmetric with development. 
Those ideas were subsequently developed, and recent 
work (Treagus, 1981) presents solutions for stress and 
strain variation in generally oblique layers in steady state 
flow. The results demonstrate that variations in size, 
shape and orientation of the infinitesimal strain ellipsoids, 
which occur according to layering attitude and viscosity 
contrast, should have no special relationship to the 
direction of infinitesimal folding. By geological analogy in 
finite strain, folds would thus develop with oblique and 
refracted cleavage of different orientation and bedding 
intersection in different layers. Current work (S.H.T.) is 
investigating the cumulative effect of steady state flow and 
buckling strains in a viscous layered system oblique to the 
three principal displacements. 

The present paper, however, neglects the complicated 
feature of stress and strain refraction in layered rocks 
oblique to the principal compression. It examines the 
orientation of fold axes with respect to the bulk or mean 
principal strain axes: these are equivalent to the axes 
(X> Y>Z) of a [aomogeneous strain ellipsoid. In the 
generally-oblique layer the fold axis will be determined by 
the orientations of the two principal strains in the plane of 
layering as demonstrated by Flinn (1962). After folding 
this plane is represented by the envelope plane, and the 
fold axis should progress according to the positions of 
finite strain in the envelope plane. There are thus two 
distinct features of folding of this system: firstly the fold 
axis does not coincide with the intersection of the XY 
plane and layering ; secondly the fold axis is not a material 
line and hence folding must progress by the interaction of 
passive fold-axis migration resulting from finite strain, 
and by active fold-axis migration indicated by the change 
in principal strain directions, These two features will be 
subsequently discussed. The present approach in terms of 
homogeneous strain does not conflict with the theories of 
stress and strain refraction since both theories require 
equality of strain ellipses on successive layer surfaces or 
envelope surfaces, in the multilayered sequence: this is a 
pre-requisite of continuity. The emphasis in this paper is 
on the range of variations of fold axes to the mean X, Y 
and Z directions, which might arise from buckling of 
different oblique layers, rather than the variation of X, Y 
and Z arising in a multilayered sequence. 

Borradaile (1978) proposed a model of oblique layers in 
homogeneous strain to explain the occurrence of folds 
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transected by cleavage in his two regional examples 
discussed above. Unfortunately some of his arguments 
and definitions are confused and the theoretical examples 
incorrect. He defined two angles for transected folds: "A is 
the dihedral angle between the cleavage plane and the 
fold axis" (the plane in which this angle is measured has 
not been stated) and "d is the angle between the axial 
plane and the cleavage in the plane of the fold profile". 
More precise definitions will be presented below. Bor- 
radaile (1978, figs. 3a and b) gave an example of an oblique 
plane and the derivation of its fold axis by Biot-Fresnel 
construction at two stages of deformation. This example is 
incorrect in two ways: firstly the two stages of defor- 
mation a and b are not on the same deformation path 
(Flinn 1965), having different k' values (our calculation 
from Borradaile's X/Y and Y/Z ratios). Secondly the 
orientation of the plane only increases in dip from a to b in 
Borradaile's example: its strike in the YZ plane does not 
change. This should only occur if deformation was purely 
constrictional (k = k ' =  oo). Because of the error in 
position of the plane in his fig. 3b, Borradaile shows, 
incorrectly, the new fold axis with a smaller angle to the 
X Y plane than the old fold axis. Both are sufficiently close 
in his example for him to consider them approximately 
the same: this should not be so. Moreover he claims 
"clearly fold axes initiated parallel to PI ... cannot remain 
parallel to the maximum extension direction in the 
enveloping surface in progressive deformation". This 
statement carries no justification. 

Several methods may be used to derive the orientation 
of principal strains in a plane oblique to X, Y and Z. Flinn 
(1962) presented the Fresnel construction method on a 
stereographi¢ projection, and Borradaile (1978) used a 
variation of this, the Biot-Fresnel construction. Ramsay 
(1967) used stereograms contoured for strain which gave 
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Fig. 1. Orientation convention of layering and strain axes X > Y> Z. 
The continuous great circle is initial layering; the broken great circle is 
deformed layering; large dots on the pecked line are the infinitesimal 
shortening directions in the layer for three strain increments; small dots 
on the pecked line are the infinitesimal extension directions in the layer 
for three strain increments; stars are the finite fold axes (maximum finite 
extension in layering) for three strain increments; the square is the 
deformed initial fold axis; 0 is the axial migration angle. Lower- 

hemisphere Lambert equal-area projection. 

immediate visual understanding and Ramberg (1976) 
presented a method of determination of the principal 
strains in any plane intersecting the strain ellipsoid, by 
vector algebra. Ramberg & Ghosh (1977) have computed 
rotations of planes and lines in three-dimensional pro- 
gressive deformation in matrix notation. These numerical 
methods are not readily applied to a simple problem. 

THE MODEL 

Plane layers oblique to the three axes of an irrotational 
deformation ellipsoid X > Y > Z are assumed to deform 
in finite strain. The orientations of X, Y and Z are chosen 
to be X vertical, Y horizontal north-south and Z 
horizontal east-west (Fig. i). Thus YZ is the horizontal 
plane and the dip of layering refers to its angle to this 
plane. The strike of layering is taken from Y. The results 
do not depend on this orientation convention: it was 
convenient for illustration, but also seemed the most 
probable general attitude of tectonic strains. Layers of 10, 
20 and 30 ° dips and varied strikes are considered to 
represent the maximum range of sedimentary dips prior 
to folding. Higher dip values than 30 ° would probably 
indicate formation of an earlier structure to be refolded, or 
an exceptional sedimentary environment, so these have 
not been included in the results. 

Three types of ellipsoid shape are considered, described 
by their k' value (Flinn 1965), where k' = In(X/Y)/ 
In(Y/Z). These are the plane-strain ellipsoid (k '=  1), a 
slight flattening ellipsoid (k '=0.71) and a slight 
constrictional ellipsoid (k '=  1.85). Deformation is 
examined in three finite increments. For each ellipsoid 
type the same shortening value Z is used as a standard, 
and Y and X values as indicated by the k' value. 

The oblique layers are considered to deform according 
to the strain ellipse in the plane of layering and to rotate 
towards the maximum extension X. The rotating and 
straining layers are assumed to generate folds in the 
competent members, with axes perpendicular to the 
direction of principal shortening in the layer. Layers are 
thus here considered to deform in two alternative man- 
ners according to their relative competence: by homo- 
geneous strain or by buckling. This model lacks the 
refinement of strain variation and refraction in a multi- 
layered sequence (Treagus, 1981) but simply considers 
a competent buckling layer in a homogeneously- 
deforming host. It may be considered to represent the 
relationship between the most actively buckled layers in a 
multilayered sequence and the mean or bulk strain 
ellipsoid, (X, Y, Z). The equivalence of the X Y principal 
plane and mean cleavage is assumed throughout this 
paper. 

The model of oblique-layer folding that we have 
described is of a layer whose fold axis at any stage is 
perpendicular to the direction of maximum shortening in 
the layer (or a plane representing the layer after folding, 
the envelope plane). In the oblique layer this direction is 
changing with strain and is not a fixed material line. The 
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Fig. 2. Fold axis orientations in suites of layers, dipping into the NW 
quadrant, in three increments of plane strain (k' = 1); (1) X = 1.26, Y -- 1.0, 
Z = 0.79;(2)X = 1.59, Y= 1.0,Z = 0.63;(3)X = 2.0, Y= 1.0,Z = 0.5. 
(a), (b) and (c) show initial dips of layering of 10, 20 and 30 ° respectively. 
In each figure the locus of all fold axes for each increment is shown by a 
broken line, and each increment numbered. Heavy lines on (b) and (c) 
show the locus of fold axes with strain, for layers of initial strikes (to Y) of 
10, 30, 60 and 90 °, numbered on the figures. Lower-heraispherc Lambert 

equal-area projection. 

relat ionship between the fold axis direction, the in- 
finitesimal fold axis and the deformed initial fold axis is 
shown in Fig. 1. The  fold axis will not,  in this model,  
behave as a passive line moving  towards  X as suggested in 
Flinn's  (1962) model  and  later by Sanderson (1973) and  
Ramsay  (1979). 

We consider that  folds are mobile  structures for a 
considerable par t  of  their development .  They  develop in 
oblique layers by obl ique hinge migra t ion in pace with the 
change in principal axes in the layer. The  reason for the 
occurrence of  buckling, that  is a s t rong competence  
contrast ,  negates a rguments  for treating initiated buckles 

Fig. 3. Fold axis orientations in suites of layers, dipping into the NW 
quadrant, in three increments of slightly-flattening strain (k' = 0.71): (1) 
X = 1.23, Y= 1.03, Z = 0.79; (2) X = 1.51, Y-- 1.05, Z = 0.63; (3) X 

= 1.86, Y= 1.08, Z = 0.5. Key as Fig. 2. 

as par t  of  a homogeneous ly  deforming packet :  this would  
imply a sudden change f rom active to passive behaviour  
which has no mechanical  basis. We argue, too,  that  if 
buckles in oblique layers did not  develop by oblique 
migrat ion as indicated (Fig. 1) but  by passive ro ta t ion of  
fold axes, fold axes would  no t  be measurably  oblique to 
X Y. However  this model  of  oblique fold accretion does 
pose certain problems which will be examined in the 
discussion. 
In the Appendices, two methods arc presented for 

determination of the direction and size of the principal 
strain ellipses in oblique layers. The equations of quad- 
ratic extensions in two and three dimensions (Ramsay 
1967) have been combined. Appendix I gives a method for 
layers of known initial orientation: it was used in a 
computer program to obtain the results discussed below. 
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Fig. 4. Fold axis orientations in suites of layers, dipping into the NW quadrant, in three increments of slightly-constrictional 
strain (k' = 1.85): (1) X = 1.33, Y= 0.95, Z -- 0.79; (2) X = 1.76, Y= 0.9, Z = 0.63; (3) X = 2.33, Y= 0.86, Z -- 0.5. Key as 

Fig. 2. 

Appendix  I I  gives a me thod  for layers of  known  deformed 
or ien ta t ion ;  this is par t icular ly  useful where the sheet dip 
of  a fold train (the enveloping surface) can be measured  
with respect  to X, Y and  Z. 

R E S U L T S  

Obliquity of  fold axes to the XY plane 

The  posi t ions of  fold axes in the suites of  planes of  

initially 10, 20 and  30 ° dips and  varying strike, are  
presented for the three types of  s train ellipsoid in Figs. 
2-4 .  Three  de format ion  increments  are  shown. The  field 
of  fold axes can be seen to relate to the initial dip, the 
a m o u n t  of  finite s train and  the k' factor  of  the ellipsoid. 
Thus  the obl iqui ty of  fold axes to Y and the X Y plane 
increases f rom (a) to (b) to (c) in each figure and  increases 
f rom f lat tening-type to const r ic t ional- type strain. I t  can 
be seen that  the locus of  a fold axis with strain (heavy 
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Fig. 5. Transection angle A defined for a generally-oblique layer (great 
circle) with a fold axis F (solid circle). 

lines), for a particular initial strike and dip, does not 
approach the X Y plane in the manner shown by a passive 
line (Fig. 1). 

The degree of obliquity can be measured by the 
transection angle A following Borradaile (1978). This is 
the angle between the bulk X Y plane and the fold axis, 
measured in the plane of deformed layering: the latter is 
equivalent to the enveloping surface, or median surface 
after folding. A is defined in Fig. 5 and values for Figs. 2--4 
are graphed in Fig. 6. The increase in A from flattening to 
constrictional strain can be clearly observed. In plane 
strain and flattening strain where initial dips are 10-20 ° , 
the maximum A only exceeds 10 ° at Z = 0.5, or 50 ~ bulk 
shortening. 

The development of a fold in an oblique layer of 
particular orientation will depend on the changing magni- 
tude of the principal strains as the layer rotates. Thus, 
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( b )  k l  =0 .71  
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Fig. 6. Curves of transection angles A against initial strike of layering, drawn for suites of layers of initial dips 10, 20 and 30 ° 
(numbered on graphsk and for three strain increments. (a) k' = 1, f rom Fig. 2. (b) k' = 0.71, f rom Fig. 3. (cl k' = 1.85, f rom Fig. 4. 

Values of strain in each increment are given in captions to Figs. 2-4 .  

go 
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Y 

,=.  
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Fig. 7. Surfaces of  no infinitesimal longitudinal strain for the three 
ellipsoid types with k' values as shown. Lower-hemisphere Lambert  

equal-area projection. 

folds may become 'stronger', 'weaker', may cease to 
develop, or may become unfolded or boudinaged (Fig. 2c). 
In exceptional cases two directions of folding may operate 
simultaneously (Fig. 4c); the initially 'strong' direction 
may, at some stage in deformation, decline and be 
overtaken by the initially 'weak' direction. The effect in 
detail of the interaction between two directions of folding 
is discussed in the subsequent section. In Fig. 7, the 
surfaces of no infinitesimal longitudinal strain are drawn 
for the three ellipsoid types. They may be used in 
conjunction with Figs. 2-4; if the normal to the fold axis, 
in the plane, is a direction of infinitesimal shortening, then 
folding is still active. 

The general conclusion to be drawn from this simple 
interpretation of the model is that folds developed on 
oblique planes under geologically realistic conditions will 
not differ in orientation greatly from those developed on 
planes which are orthogonal with respect to X, Y and Z. 
Thus, for planes with initial dips of 10 ° and under, and 
subjected to plane strain or slight flattening (generally 
assumed for most deformation), fold axes may be expected 
to develop very low plunges and an obliquity to cleavage 
(=XY) which would be scarcely detectable in the field. 
However, we consider that some of the commonly 
recorded 'aberrances' of fold axes, their plunge and 
obliqueness to cleavage, may be explained by develop- 
ment of the general model. Firstly, we will show that 
angular axial migration of folds should lead to periclinal 
development; secondly, we will show that pseudo- 
flattening deformation can arise from slightly- 
constrictional tectonic strain if volume loss is assumed; 
thirdly, if constrictional deformation is allowed as a 
'normal' situation for deformation, then strong plunge 
variations in natural folds may be readily explained. 

Axial migration 

It has been proposed that in the general model of 
folding where layering is oblique to bulk X, Y and Z, 

folding must develop by oblique accretion. At any instant 
the increment of buckling will be parallel to the increment 
of maximum shortening in the layer, which changes 
continuously. The incremental fold axis is not coaxial to 
the finite fold axis, as shown in an example in Fig. 1. The 
fold axis moves through the layer (represented by the 
enveloping surface) during its development and cannot be 
considered as a material line. The angular difference 
between the finite fold axis and the deformed initial fold 
axis is here termed the axial migration angle. It is denoted 
in Fig. 1 by 0. 

The progressive development of 0 with finite strain is 
shown in Fig. 8 for two 20°-dipping planes (030/20 and 
060/20). Results are presented for the plane-strain ellip- 
soid (k' = 1, Fig. 8a) and the slightly-constrictional ellip- 
soid (k' = 1.85, Fig. 8b). The incremental change of 0 is 
given in Fig. 8(c). The highest angle of axial migration 
occurs in the slightly constrictional strain ellipsoid in the 
plane at lowest strike to Y. In plane strain the axial 
migration angles will probably not exceed 10 ° during 
progressive strain, and in flattening strain the angle will be 
negligible. 

The actual amount of angular axial migration is 
expected to be slightly less than shown in Fig. 8 since the 

(a) kl-1 
Y 

30 : 

X 

(b) kl- 1.85 
Y 

I 

X 

(c) 

20 ° 

10 ° 

/3O 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ /  j 3 0  

1 2 3 
Increment 

Fig. 8. Axial migration angle 0 in layers with 20 ° initial dips and initial 
strikes 030 and 060 ° ; numbered as 30 or 60 on each figure. (a) k '  = 1, (b) 
k' = 1.85. Heavy curves are loci of fold axes; broken curves are loci of 
deformed initial fold axes;  fine lines denote 0 for the three strain 
increments (as numbered in (b) 30). (c) Values of 0 from (a) and (b) for the 
three strain increments:  solid curves k' = 1 ; broken curves k' = 1.85. 
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initial fold axis will not form instantaneously at the start 
of strain. In practice, therefore, 0 will be the difference 
between the fold axis at the end of deformation, and the 
deformed position of the first-appearing fold axis. If the 
first significant fold axes have appeared after strain 
increment 1, the values of 0 in Fig. 8(c) must be measured 
from this stage: they will be up to 2 ° less than the values 
shown. 

This model of folding by oblique axial migration clearly 
differs from that of Flinn (1962) who treated fold axes as 
passive lines, and Borradaile (1978) who dismissed fold 
axis movements. It is also distinct from Sanderson's (1973) 
model to explain the obliquity of fold axes to Y in the X Y 
plane. We consider that folding is the result of an active 
instability which progressively develops in pace with the 
strain in the layer. The angular migration of the fold axis 
during the development of folds will be as important as 
the changes in limb dip, shape and symmetry. Folding is 
thus a three-dimensional process in the most general case. 
Most previous models of folding have assumed that 
structures were cylindroidal: the development of folding 
could be treated in two dimensions (the profile plane), 
with the third dimension (the fold axis) parallel to Y of the 
bulk strain ellipsoid. Fold axes would thus be fixed and 
remain parallel. However, the recent buckling experiments 
of Dubey & Cobbold (1977), where layering was parallel 
to the YZ bulk principal plane (layer-parallel compression), 
have demonstrated some three-dimensional features of 
folding. Folding began as bulges at particular points of 
weakness, progressed to localised periclines with ter- 
minating axes, and finally developed to approximately 
cylindroidal folds on subparallel axes, during progressive 
strain. Fold axes thus developed laterally from a point 
source, via a restricted length to unrestricted length, by a 
combination of axial propagation and joining up of in- 
line folds. A change from folds dominated by initial 
irregularities to regular buckling was achieved. These 
layers had zero 0 and therefore the fold axes could become 
fixed. 

In generally-oblique layers the change from early 
periclinal folds to cylindroidal folds during progressive 
strain may be inhibited by axial migration. The processes 
of axial propagation and coalescence of in-line folds will 
not operate along fixed material lines as described for 
layer-parallel compression : their activity will be reduced 
in proportion to the axial migration angle. We therefore 
suggest that oblique layers which have a measurable axial 
migration angle (0 > 5 °) would rarely develop cylin- 
droidal folds, and the change from folding dominated by 
initial irregularities to regular buckling would be incom- 
plete. En-echelon periclinal folding centred at initiation 
sites with the periclinal axes moving in pace with the 
changing principal strain directions in the envelope plane, 
will develop (Fig. 9). The fold axes should be subparallel 
but plunge variations will arise from curving or branching 
fold axes, periclinal endings and truncation of abutting 
folds. A correlation between 0 and the pericline length is 
expected: this is the subject of current work (S.H.T.). 
Pericline lengths 3-6 times the fold wavelength (axial 
wavelength/profile wavelength of 6-12) would be com- 

Fig. 9. Schematic development of l~riclinai folds of en-echelon and 
branching forms. Heavy lines are antiformal axes; broken lines are 
synformal axes. The orientation of the initial fold axes is given at the top 
and bottom. Initiation sites are shown by dots. Fine lines show the limit 

of final fold geometry. 0 is the axial migration angle (= 10°). 

patible with 0 of 5-10 °. Smaller ratios are indicated for 
0 > 1 0  °. 

In the examples of generally oblique layers in this paper 
(Figs. 2-4), 0 values range from approximately zero to 
more than 20 ° according to layering attitude and strain 
ellipsoid type (Fig. 8). It is suggested that the value of 0 
dominates the geometric development of folds, to a 
spectrum of types from cylindroidal to periclinal. The 
value of 0 broadly correlates with the transection angle A; 
thus a relationship between fold geometry and fold-axis 
obliquity to the X Y plane exists. The oblique layers in the 
slight flattening ellipsoid (k' = 0.71) and some attitudes in 
plane strain (k' = l) are expected to fold on axes subparal- 
lel to the X Y plane but oblique to the stretching direction 
X, and develop approximately cylindroidal geometry. 
Some oblique layers in plane strain (initially moderate dip 
to the Y Z  plane and low strikes to Y), and the oblique 
layersin slight constriction (k' = 1.85) are expected to fold 
on axes oblique to the X Y plane and develop en-echelon 
periclines. As the degree of fold axis obliquity increases, 
the periclinal wavelength approaches the profile wave- 
length. Considerable variation in fold axis azimuth and 
plunge is expected in these examples. The presence of two 
directions of folding in some examples will give rise to 
additional plunge variation as discussed below. 

Strain with volume loss 

The effect of volume loss during finite strain has been 
thoroughly investigated for a tectonic plane-strain model 
by Ramsay & Wood (1973). Volume loss could be divided 
into two types: early compaction of sediments .(pure 
flattening in bedding) prior to tectonic strain; and 
tectonic strain with volume loss. The former process 
imposed a more dramatic effect on the resultant defor- 
mation. It was shown that total strain, or the 'apparent 
strain' of Ramsay & Wood (1973), indicated flattening. 
Thus strain data from deformed spots and other objects in 
slate belts indicating flattening (k' < 1) were shown to be 
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Fig. 10. Ramsay & Wood ( 1973)-type deformation plot X~ Y against Y/Z 
(log. scale) for initial compaction with 0, 30% and 50% volume loss 
(solid, dot-dash and broken lines respectively), followed by tectonic 
strain of three ellipsoid types: (a) k'= 1; (b) k'= 0.71; (c) k'= 1.85. 
Arrows mark direction of deformation paths; open circles and numbers 
position each strain increment on the deformation path; dots mark the 
locus of total strain states with volume loss, after increments 2 and 3. 
Values of X, Y and Z for the three increments in each tectonic strain 

ellipsoid are given in the captions to Figs. 2--4. 

consistent with initial compaction followed by tectonic 
plane strain. 

The Ramsay & Wood (1973) method can be applied to 
tectonic strain ellipsoids which are not plane-strain, to 
determine the nature of the total strain for particular 
amounts of initial compaction. In Fig. 10 deformation 
plots of X/Y against Y/Z are shown for the three kinds of 

tectonic strain ellipsoid used in this paper, and for initial 
compaction of 0.30% and 50%. The positions of total 
strain for each of the three finite increments of tectonic 
strain are indicated. Figure 10(a) shows tectonic plane 
strain and the results are consistent with Ramsay & Wood 
(1973). In Fig. 10(b), the slightly flattening tectonic strain 
ellipsoid (k '=  0.71), the total strain field shows greater 
flattening than in Fig. 10(a), as expected. The slightly- 
constrictional ellipsoid is the most interesting graph (Fig. 
10c). It is apparent that with initial compaction of more 
than 40%, total strain in the flattening field will result. 
This seems a reasonably conservative figure for com- 
paction of sediments. It follows that strain markers 
indicating flattening could reasonably arise from slightly 
constrictional tectonic strain following earlier compac- 
tion strain. The strain markers and cleavage will result 
from the total strain, but the structural features such as 
folds and boudins will result from the tectonic strain only. 
Thus folded layers whose structures suggest a con- 
strictional strain mode would be associated with cleavage 
and strain markers indicating flattening strain. 

The examples in Fig. 10 were for three different tectonic 
strain ellipsoids in three equal increments of deformation. 
Comparison of the total strains for the three graphs shows 
that highest strains arise in the slight flattening case (Fig. 
10b) and lowest in slight constriction (Fig. 10c). Thus the 
strain markers and cleavage in the latter case would be 
expected to display a lower X/Y ratio than the X/Y ratio 
indicated by two directions of folding. 

No account has been taken here of volume loss during 
tectonic strain. The present treatment has not included 
the effect of dip oflayering with respect to the tectonic strain 
axes, Fig. 10 assumed a simple co-axial relationship 
between the initial compactional strain and the tectonic 
strain. However it is probable that the total strain 
ellipsoid, represented by deformed markers and cleavage, 
and the tectonic strain ellipsoid, represented by folding 
and boudinage, are not only different in shape, but also in 
orientation, in a general folding model. 

It has been shown by a simple model of compactional 
flattening followed by tectonic strain that the resultant 
total strain ellipsoid may markedly differ in shape and 
relative size from the tectonic strain ellipsoid. Ramsay & 
Wood (1973) were able to demonstrate that the strain 
data in slates which suggested flattening (k' < 1) could 
have arisen from tectonic plane strain. Plane strain is a 
convenient concept which may also be shown to be a good 
approximation to natural deformation. However it is also 
possible to argue that the strain data in slates could have 
arisen from tectonic flattening or slight constriction (k' 
= 0.5-2), from the results of Fig. 10. Thus apparent 
flattening indicated by cleavage and strain markers can 
theoretically be associated with constrictional tectonic 
structures in rocks with compactional volume loss. It 
seems reasonable, therefore, to suggest that folded rocks 
where the folds are markedly transected by cleavage (high 
A) and have axes strongly variable in orientation and 
plunge, have arisen from slightly constrictional tectonic 
strain. The mutual effects of two directions of folding will 
be examined below. 
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Fig. 11.(a)Geometric model for determining shortening in folding. ~t is the limb angle. (b) Relationship of shortening and limb 
angle ~, derived from (a). (c) Use of the geometric model and graph (b) to determine the mutual effect of two directions of folding 
F and f (solid circles), in a layer (broken curve) initially 000/20°W, after one increment of slightly-eonstrictional strain {k' 
= 1.85 : X = 1.33, Y = 0.95, Z = 0.79). (i) Strong folding on axis F with shortening strain (1 + e) = 0.87 and, limb angles 40 ° ; f 
folded t o f l - - f  1. (ii) Weaker crossfolding on a x i s f  with shortening strain 0.95 and limb angle 25°; F folded to F1-F 1. 

Two directions of folding 

The process of interaction of two simultaneous direc- 
tions of folding will be examined by using two particular 
examples: planes with initial dip of 20 ° and strikes of 0 
and 20 ° in the slightly constrictional ellipsoid (Fig. 4b). 
The amounts of the two principal strains in the layers for 
each increment will indicate the stronger and weaker fold 
axes .  

In order to investigate the effect of one direction of 
folding on another, a given shortening strain must be 

converted into a fold of particular shape and limb dip. A 
model for folding must thus be introduced. A geometric 
model of fold growth with strain is considered to be more 
suited to the framework of this paper than the use of 
experimental or finite element results which are de- 
pendent on mechanical and mathematical premises. Fold- 
ing is thus simply assumed to be sinusoidal, with a sine- 
wave form (Fig. 1 la). All the layer shortening is taken up 
in folding, and thus a simple relationship between shor- 
tening and arc length exists. The shortening can be 
computed for waves of different limb angle (~t) to the 
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(a) First increment X=1.33, Y='95, Z - ' 7 9  (b) Third increment X-2-33,  Y=.86, Z='5 
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Fig. 12. Progressive effects of two directions of folding in layering (broken curve) initially 000120 ° W, following Fig. I 1. The two 
values of principal strain in the layer are marked; the maximum shortening undergone parallel to F is the figure in brackets in 

(b). F - F  t is the main fold plunge variation, a n d f - f  ~ is the crossfold plunge variation. 

median line, (Fig. 11b). The graph enables an estimate of 
limb angle to be made for any shortening strain. This 
method has certain limitations. No layer shortening prior 
to folding is accounted for, so limb angles must be 
regarded as the maximum which might arise in the most 
actively buckling layers. Folding is assumed to be in 
symmetric waves, since the use of an asymmetric fold 
wave form would be dependent on assumptions about 
axial-plane orientation. In previous work (Treagus 1973) 
folding of oblique layers was considered to initiate 
symmetrically. Since the results below are confined to 
folds of predicted obtuse interlimb angles, fold sym- 
metry seems a reasonable approximation. 
An example of the use of Fig. 11(b) is given in Fig. 11(c) 

for a plane of initial dip 20 ° and strike zero (two- 
dimensional oblique). Two directions of folding are 
shown in Fig. 11(c), (i) and (ii): F with limb angles of 40 ° 
andf with limb angles of 25 °, arising from the shortening 
values shown. Each fold might have an effect on the other 
as shown. The variation of the main fold axis F-F t, 
arising from the weak cross folding off, is more significant 
here than the variation f-f t. In some examples the two 
directions may interchange in significance, or be equally 
strong, so the geological significance of the weak fold axes 
cannot generally be discounted. 

The use of the method to investigate the interaction of 
two directions of folding during progressive strain is 
illustrated by two examples. Figure 12 shows the first and 
third increments of deformation of the initial plane 000/20 
of Fig. 1 l(b). The two directions of folding are fixed, but 
interchange in significance as the shortening values show. 
The early main fold axis F becomes a direction of 
extension and the weak fold f remains a shortening 
direction throughout strain, so that it has become the 
stronger direction in Fig. 12(b). Where a change from 
shortening to extension has occurred, the maximum 

shortening undergone, shown in brackets in Fig. 12(b), 
has been used to compute plunge variation. The omission 
of fold modification in extension is justified below. Figure 
12 is a good example of the change in importance of the 
two folding directions. The finite effects after the third 
increment are two directions of folding of equal limb angle 
with mutually-affected plunge variation. The folds would 
be expected to have a dome- and basin-type geometry. 
Downward facing occurs at F t as a result of plunge 
variation. 

Figure 13 is an example of two directions of folding in a 
generally-oblique plane (020/20). The three-dimensional 
obliquity requires angular fold axis migration as de- 
scribed previously, in contrast to Fig. 12. The two 
migrating potential fold axes do not change in relative 
importance during finite strain. The strong folding direc- 
tion F and the weak directionf should exist concurrently 
until the cessation of shortening inf. The fold axisf would 
not be expected to be apparent as such: its real impor- 
tance is in its effect on the main fold plunge F - F  t. A high 
axial migration angle 0 is indicated by the change in F 
from Fig. 13(a) to (b). Periclinal main folds would be 
expected to develop and be modified by the crossfoldingf. 

These examples, based on a simple geometric model of 
folding, are given to illustrate some potential features of 
interaction of folding, in slightly constrictional strain. The 
incorporation of extensional features is beyond the scope 
of the simple model. Extension in the form of decrease in 
fold limb dips is considered unacceptable: folding is here 
envisaged as irreversible. Fold modification by homo- 
geneous strain is considered inappropriate too: it cannot 
be argued that a competent layer which actively buckles in 
compression will become passive in extension. 

The effects of two directions of shortening in rocks are 
considered to give rise to significant plunge variations as 
illustrated theoretically. Main fold axes will be strongly 
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Fig. 13. Progressive effects of two directions of folding in layering (broken curve) initially 020/20 ° NW, following Fig. 11. The 
two values of principal strain in the layer are marked; the maximum shortening undergone parallel to F is the figure in brackets 

in (b). F - F  1 is the main fold plunge variation andf-f I is the crossfold plunge variation. 

variable and generally markedly oblique to cleavage. Two 
other factors will contribute to the variation of fold axes, 
however. Since the layers have two principal directions of 
shortening, all lines on the bedding plane are directions of 
shortening and potential folding. Thus, if initial irregula- 
rities affect the positioning of folds, fold axes may arise in 
any direction between F andf .  The competition between 
the strongest folding in direction F, and the use of 
inhomogeneities for fold siting, will control the regularity 
of folding. In layers with good bedding planarity, peri- 
clinal folding on axes subparallel to F, with plunge 
culminations and depressions arising both from periclinal 
noses and from crossfoldingf, would be expected. Layers 
with irregular thickness, marked bottom structures and 
other inhomogeneities would be expected to display 
locally a wide variety of fold-axis orientations, in addition 
to the plunge variations arising from the factors discussed 
above. Here folding may locally be aberrant, downward 
facing and strongly transected by cleavage. The mutual 
interference of directions of folding in all orientations is 
shown schematically in Fig. 14 for three initial orien- 
tations of layering: layer-parallel compression (a); two 
dimensionally oblique (b) and three-dimensionally ob- 
lique (c). Areas of strongest folding are shown, and the 
region where fold axes have passed through the 90 ° pitch 
on their axial planes (perpendicular to layering in these 
examples) is designated 'downward facing'. 

Natural layers in slightly constrictional strain are thus 
expected to show the following features: folds of periclinal 
form with axes oblique to cleavage; statistically variable 
fold axis orientation, locally and regionally, with a 
correlation between scatter and initial inhomogeneities of 
bedding planarity; apparent crossfolding with resulting 
culminations and depressions of plunge which may give 
rise to downward facing. The relative dominance of the 
theoretical periclinal wavelength indicated by the 0 value, 

and the crossfolding wa~,elength, (equivalent to the main 
fold wavelength), cannot be stated conclusively. It is 
suggested that the periclinal process, which is proposed in 
this paper to be a significant factor of generally oblique 
folding, would dominate the early stage of folding and 
over-ride the initiation process of weak crossfolding. In 
practice therefore the plunge variation arising from 
crossfolding would most probably be manifested in 
strongly periclinal folding on variable axes. 

The above features are consistent with many regional 
descriptions of unusual or aberrant relationships of folds 
and cleavage, some of which were outlined in the In- 
troduction. We tentatively propose this model of folding 
in slightly constrictional tectonic strain as a working 
hypothesis for regions of strong plunge variations and 
local downward facing. It has been suggested as an 
explanation of the structures in the Galloway region of 
southwest Scotland (Stringer & Treagus 1980). It was 
the explanation most favoured by Ramsay & Sturt (1973) 
for the fold patterns in Srrfy, north Norway. 

CONCLUSIONS 

An examination of strain in layers of general non- 
orthogonal orientation to the axes of the bulk strain 
ellipsoid has enabled a general model of folding to be 
proposed. Layering is restricted in initial orientation to 
low sedimentary dips, and tectonic strains are taken as X 
vertical and Y and Z horizontal. The bulk strain ellipsoid 
is not restricted to the plane strain case. This general 
folding model is shown to be associated with features 
which have previously been regarded as unusual and 
aberrant. These are summarised below. 
(i) Fold axes will develop oblique to the bulk X Y  or 
cleavage plane. Cleavage is therefore non axial-planar to 
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Fig. 14. Patterns of possible fold axis orientations after three increments ofslightly constrictionai strain (k' = 1.85; X = 2.33, Y 
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plunge variation. Fine shading is the field of possible folding, with plunge variation. Lined shading marks regions of 

"downward-facing folds" defined in the text. 

folds The obliquity of fold axes to cleavage will be related 
to the k' factor of the bulk strain ellipsoid. In plane strain 
and slight flattening the transection angle will be small, 
and fold axes will be approximately parallel to cleavage, 
with a plunlze. The cleavage-bedding intersections will 
therefore be approximately parallel to the fold axis. In 
slightly constrictional strain, however, transection angles 
will be more marked. If the layer is in total shortening, 
greater variation of fold axes will arise (see (5) below). 
(2) Folding will progress by angular migration of axes 
such that the fold axis is a non-material line. The size of the 
axial migration angle (0) will vary according to the strain 
state, initial layer attitude and degree of initial irregula- 
rities in bedding. In layers with zero 0 (parallel to X, Y or 
Z), cylindroidal folds of indefinite length should develop. 
In generally oblique layers in flattening strain, and some 
orientations in plane strain (low dips to YZ, high strikes 
to Y), folding should be approximately cylindroidal on 

parallel axes. In generally oblique layers in slight con- 
striction, and some orientations in plane strain (moderate 
dips to YZ, low strike to Y), folding should generally be 
non-cylindroidal. Periclines centred on initial irregula- 
rities, in en-echelon arrangement with branching or 
terminating axes, are expected. Subparallelism of peri- 
clinal axes is predicted for plane strain states, and curving 
variable axes for more constrictional strain states. 
(3) The features of(l)  and (2) above can be combined as a 
correlation of associated structural features and the 
tectonic strain state in which they arose (Table 1). The 
features form a spectrum from flattening to constdctional 
strain, but their relationship to layering attitude gives an 
extra dimension of variability not shown in Table 1. The 
degree to which the structural features in oblique layers in 
plane strain reflect more flattening or more constrictional 
features is dependent on initial attitude of layering X, Y 
and Z. 
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Table 1. Correlation of structural features with tectonic strain state 
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Flattening strain Plane strain Constrictional strain 

Fold axes parallel to X¥  ) A increasing ) 

Cylindroidal folds 
Infinite fold length ) Definable fold length ) 
Axial-plane cleavage ) 

Cleavage-bedding intersection ) 
parallel to fold axis 

Fold axes strongly oblique to XY 
Periclinal folds 
Periclinal wavelength 
Non-axial plane cleavage; transected 
folds 
Cleavage-bedding intersections vary 
around fold; oblique to fold axis. 

The geological features summarised in Table 1 for flat- 
tening strain and some plane strain examples are those 
often reported in field descriptions. The only indication 
that those structures arose in layering initially oblique to 
X Y and Z, rather than in layer-parallel compression would 
be the non-orthogonal relationship of the stretching 
lineation and fold axis or cleavage-bedding intersection, 
on the cleavage plane. 
(4) Constrictional strain where Y is a direction of slight 
shortening has been shown to be reasonable as a tectonic 
strain model. The presence of cleavage and flattened 
objects in most folded rocks would seem to negate 
constrictional deformation. However tectonic constric- 
tion following compactional flattening of more than 40 % 
would give rise to constrictional fold structures associated 
with a flattened fabric. 
(5) The interaction of two directions of folding is sugges- 
ted to give rise to strong plunge variations and even 
downward facing. These will be combined with the 
general feature of periclinal folding. Moreover since all 
directions in the layer are shortening, they are potential 
fold axes. Thus a wide field of main fold axes, affected by 
crossfolding to give plunge variation, would be expected 
particularly in layers with strong initial inhomogeneities. 
The essential geological features peculiar to strain with 
slight shortening in Y, are summarised below: 

(i) Folding on strongly-varied axes; variation within 
single folds and in adjacent folds, laterally in the 
envelope plane and in plunge. 

(ii) Folds with anomalous orientation with respect to 
others, or downward facing. 

(iii) Periclines of dome-basin form. 
(iv) Cleavage non-axial planar. Folds cross-cut or 

completely transected by cleavage. Cleavage- 
bedding intersections are noticeably non-parallel 
to fold axes in most folds, and thus appear to curve 
around the folded layer. 

(6) All the features of folding and strain described 
previously refer to the bulk strain and bulk or regional 
cleavage. In detail the folds are expected to be associated 
with cleavage which varies in strength and orientation 
with rock competence, and varies in orientation in 
sympathy with folding. It is tentatively suggested that 
competent layers may contain cleavage in convergent fans 
(in profile) intersecting bedding approximately parallel to 
the fold axis, while the incompetent layers with divergent 
fans have cleavage strongly oblique to the fold axis. In 
certain fold regimes the effect of cleavage fanning as a 
result of folding, combined with the cleavage arising from 

oblique strain, may give rise to some unusual cleavage- 
bedding relationships, (Roberts 1971, Stringer & Treagus 
1980). 
(7) Many of the features outlined in these conclusions 
might be attributed to polyphase deformation. Some such 
explanations for regions of folds transected by cleavage 
were given in the Introduction. It is therefore imperative 
that we present criteria which may be used to distinguish 
structures of unusual types arising in a single phase of 
deformation from genuine superimposition of folding and 
cleavage formation. 

If the folds are the first observable ones, and the 
cleavage is a penetrative slaty or spaced cleavage we 
would assume that they were synchronous. The difference 
in timing of folding and cleavage within one event is not 
favoured as a general hypothesis. The concept that rocks 
first folded and later became cleaved (after a rotation in 
strain axes) is considered to be mechanically unsound. 

Folding on two axes should be distinguishable from 
genuine refolding on two counts. Firstly, polyphase 
folding should be associated with either two clearly- 
distinguishable fabrics, a slaty cleavage and a cross- 
cutting crenulation cleavage, or with a folded slaty 
cleavage. Single-phase constrictional folding would have 
a single cleavage. Secondly, the experimental work of 
Ghosh & Ramberg (1968) demonstrated clear differences 
in scale and wavelength between constrictional folding 
and refolding. The former should give rise to varied folds 
of the same wavelength. However refolding patterns 
should show smaller wavelengths and amplitudes in the 
secondary structures than in the first structures. This 
concept is borne out by most analyses of polyphase 
deformation. 

In conclusion it is suggested that any interpretation of 
geological structures is affected by current theories. The 
concept that folding in nature takes place on horizontal 
planes, in layer parallel compression, to form perfect 
cylindrical folds is based on the convenience of this model 
in experimental and mathematical studies. This has given 
rise to an almost-exclusively two-dimensional view of 
folding despite the attempt of Flinn (1962) to rectify this. 
The variety of special explanations for regions of folds 
with non-axial planar cleavage, including our own, is an 
example of how interpretation of facts can be influenced 
by a set of concepts. 
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APPENDIX 

I. Derivation of strain in any plane of known initial attitude in the strain 
ellipsoid 

The principal axes of the irrotational strain ellipsoid (X > Y > Z) are 
defined as vertical and horizontal in Fig. 15(a). The layering plane is 
defined by two lines contained in it: So is the initial horizontal line, or 
strike; do is the initial dip line. After strain, their positions change and are 
no longer perpendicular. We have chosen to define the horizontal plane 
as a principal plane, and hence the line s, will remain the strike of the 
plane throughout strain. However, d, is not the direction of dip of plane 
s.d, after strain. 

(b) Y S 

D X 

Fig. 15.(a)Orientation convention used in Appendix I. The continuous 
great circle is the initial layering plane. So and do are the initial strike and 
dip lines respectively. The broken great circle is the deformed layering 
plane and s, and d. are the deformed strike and dip lines after strain 
increment n. (b) Orientation convention used in Appendix II. The 
broken great circle is the deformed layering plane. S and D are the strike 

and clip lines respectively. 
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The strains will be written as quadratic elongations 2t, 22 and 23 
(Ramsay 1967), where ).1 = X 2, 22 = y2, and 23 = Z ~. The attitude of 
the layering plane to 2~ is defined by direction cosines, at are the direction 
cosines ofs0 to :.~, and//~ are the direction cosines of do to 2~, with i = 1, 2, 
3. ,,; and/~; represent the direction cosines after a given strain. 

The following equations can be written, following Ramsay (1967), 
where 2, and 2~ are the quadratic elongations parallel to s. and d.. 

;., = ~,=;.~ + a,=;., + ~ : . ~  (1) 

;~ = / ~ ; - ~  + / ~ ] ; . ,  + /~ i ; . ~  (2) 

'~q 2 a; 2 = " 7  ~, (3)  

~ 2  = 7 fl~ . (4) 

The angle s, ^ d, defined as ~b' is given by 

cos~' = ,,~/~ + ,,~/~ - ~ / ~ ,  (57 

This angle can be determined from equations (I) to (4). It is related to the 
shear strain for s. and d, such that 

I 
~, = ~ = ~ (6)  

tan~ 

,;.,, :.a and ~,~ may be used to determine the amount and orientation of the 
principal quadratic elongation (:.~I > :.~) in the plane s~d,. The 
orientation of :.pt is defined by angle 0' to s,. Quadratic elongations are 
written below as reciprocals(2'), following Ramsay (op. cit.). 

2', ---- (';'~ + ;'~'I---------~) (2~,= - )'~')cos20' (7) 
2 2 

;.~ = (;'P' + ;'~) (;'~ - ;'h)cos2(~' - 0') (8) 
2 2 

~, .;.; = (;-;,~ - ;-h) 
- -  sin 20' (9) 

2 

~'~ .,;.~ = (;-~,2 - ;.~,) sin 2Rb' - 0'). (10) 
2 

Thus 

and by rearrangement 

2,  s in 2 ( ¢ '  - 0') 

,:.~ sin 20' 
(11) 

sin 2tk' 
tan 20' = (12) 

,;.,/,;.~ + cos 2t#' " 

,;.,, 2~ and ~b' may be computed from equations (1), (2) and (5), hence 0' 
determined. Reorganisation of (7) and (8) yields 

2v~ (13) 
I - [(1 - cos 20')/(sin 20' tan 2~')] 

2~ 
2~2 = (14) 

1 + [(1 - cos 20')/(sin 20' tan 2#')] " 

These can be computed. 
This method was used to determine the changing orientations of suites 

of planes of known initial attitude in three equal increments of strain. At 
each stage the values of the two principal elongations in the plane, and 
their orientations, were computed. The method is applicable to planes of 
any attitude, and strain ellipsoids of varied shapes. From the relative 

values of the two principal strains in the plane of layering, it is possible to 
determine whether folding is active. 

II. Derivation of strain in any plane of known final attitude in the strain 
ellipsoid 

The notation used for the principal strain ellipsoid and its attitude are 
defined in I. The layering plane is here defined by its final strike and dip 
lines S and D (Fig. 15b), which are perpendicular. S is thus parallel to s, of 
I, but D is not parallel to d.. 

The attitude orS to 2~ is given by direction cosines ~, and D to ,;,~ by 8~, 
with i -- 1, 2, 3. The undeformed values are not used in this analysis. 

Rewriting equations (1) and (2) for the deformed state, 

:.~ = ~:4 + ~=::.~ + ~;.~ (15) 

:.i, = ~;.~ + ~2:.~ + ~i;-~. (16) 

The proceeding analysis is simplified by the interdependence of the six 
direction cosines. The orientation of S is such that (i -- 0, and 

~ = ( I  - ~ ) ( 1  - 6 1 ) .  ( 1 7 )  

The direction cosines may thus all be written in terms of~3 and 6 D where 
~s is sine the angle of strike and 61 is sine the angle of dip. Equation (15) 
and (16) may thus be written: 

~.~ = (I - (I);4 + ~2:,~ ( Is )  

2~ = 6~,;.~ + (a=(l - 6tz):.~ + (1 - ~)(I - 6~):.~. (19) 

Thus, from the value of strike and dip of the deformed layering plane 
and 2;, :.~ and 2~, the values of :.;~ and 2~ can be determined. These may 
be used to calculate the principal reciprocal quadratic elongations 
(:-~, > ,:.~,2) in the plane, where O' is at angles of 2~,; to S. It can be shown 
that 

,;.~(I + sec20') + 2~(I - see20') 
;,h = ( 2 0 )  

2 

;.~(i - sec20') + ;.~(I + see20') 
;.~ = ( 2 1 )  

2 

The angle 0' cannot be determined without another equation. The 
relationship of shear strain of line S will be used, following Jaeger (1964, 
p. 36): 

+(; ,  ;.~)2-2 2 - ~ 1 ~2 (22)  

which simplifies, in this analysis, to 

This is equivalent to the shear of S in the strain ellipse for plane SD, 
which can be written 

(2~u - :.~,, ) sin 20' 
y~).~ = (24) 

2 

Equating (23) and (24), and using (20) and (21): 

tan20' = 2 (2~ - 2[)~a(1 - (~)L: (25) 
;.~ - ;.~ 

Using (18) and (19), 0' can be computed and thus from (20) and (21) 2~ 
and 2v2 determined. 

This method is useful to determine strain in planes of known final 
attitude and unknown initial attitude. It is particularly applicable to 
single-example problems, and by using strike and dip angles only, the 
computation is quite simple. 
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